Causal inference in longitudinal studies with history-restricted marginal structural models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Causal inference in longitudinal studies with history-restricted marginal structural models.

A new class of Marginal Structural Models (MSMs), History-Restricted MSMs (HRMSMs), was recently introduced for longitudinal data for the purpose of defining causal parameters which may often be better suited for public health research or at least more practicable than MSMs (6, 2). HRMSMs allow investigators to analyze the causal effect of a treatment on an outcome based on a fixed, shorter and...

متن کامل

Restricted Structural Equation Models for Causal Inference

Causal inference tries to solve the following problem: given i.i.d. data from a joint distribution, one tries to infer the underlying causal DAG (directed acyclic graph), in which each node represents one of the observed variables. For approaching this problem, we have to make assumptions that connect the causal graph with the joint distribution. Independence-based methods like the PC algorithm...

متن کامل

Marginal structural models and causal inference in epidemiology.

In observational studies with exposures or treatments that vary over time, standard approaches for adjustment of confounding are biased when there exist time-dependent confounders that are also affected by previous treatment. This paper introduces marginal structural models, a new class of causal models that allow for improved adjustment of confounding in those situations. The parameters of a m...

متن کامل

Causal Inference on Time Series using Restricted Structural Equation Models

Causal inference uses observational data to infer the causal structure of the data generating system. We study a class of restricted Structural Equation Models for time series that we call Time Series Models with Independent Noise (TiMINo). These models require independent residual time series, whereas traditional methods like Granger causality exploit the variance of residuals. This work conta...

متن کامل

Marginal Structural Models versus Structural Nested Models as Tools for Causal Inference

Robins (1993, 1994, 1997, 1998ab) has developed a set of causal or counterfactual models, the structural nested models (SNMs). This paper describes an alternative new class of causal modelsthe (non-nested) marginal structural models (MSMs). We will then describe a class of semiparametric estimators for the parameters of these new models under a sequential randomization (i.e., ignorability) assu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2007

ISSN: 1935-7524

DOI: 10.1214/07-ejs050